Non-identical particle femtoscopy in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE detector at the LHC

(Date: 08/01/2020)

Ashutosh Kumar Pandey
Postdoctoral Research Associate,
Tomonaga Center for the History of the Universe,
University of Tsukuba
Introduction

• Big-Bang theory of the universe predicts that matter existed in QGP form after \(\sim 1\mu s \) of the universe formation

• Lattice QCD predicts QGP at \(\sim 170 \text{ MeV} \) temperature

• Very hot and dense QGP like medium formation in heavy-ion collisions due to inelastic collisions between nuclei and conversion of kinetic energy into heat

• To obtain the equation of state, it is important to know the dimensions of fireball which is impossible to measure directly due to its very small size

• Femtoscopy (or HBT technique) provides a direct tool to measure the source parameters
Two-particle correlation function

\[C_2 = \frac{P_2(p_a, p_b)}{P_1(p_a)P_1(p_b)} \]

Koonin-Pratt Equation,

\[C(q) = \int \, d\mathbf{r} \left| \psi(q, \mathbf{r}) \right|^2 S(\mathbf{r}) \]

Experimental correlation function

\[P_2(p_a,p_b) \] – probability of detection of particles with momenta \(p_a \) and \(p_b \)

\[P_1(p_i) \] – probability of detection of particle with momentum \(p_i \)

Ashutosh Kumar Pandey
Relevant coordinate system

Out-Side-Long coordinate system is used in femtoscopic analysis.

Longitudinal co-moving system (LCMS):

A pair rest frame moving along the beam direction such that $P_z = 0$

$$V_{long} = \frac{(P_0 V_z - P_z V_0)}{M_T}$$

$$V_{side} = \frac{(P_x V_y - P_y V_x)}{P_T}$$

$$V_{out} = \frac{(P_x V_x + P_y V_y)}{P_T}$$

Pair rest frame (PRF):

$$V'_{out} = \frac{M_{inv}}{M_T} \frac{(P_x V_x + P_y V_y)}{P_T} - \frac{P_T}{M_T M_{inv}} P \cdot V$$

Where $M_T^2 = P_0^2 - P_z^2$, $P_T^2 = P_x^2 + P_y^2$ and $M_{inv}^2 = P^2$

Pion-kaon femtoscopy analysis has been performed in PRF.
Why non-identical particles?

- In a hydrodynamical induced system:
 \[\beta_{\text{particle}} = \beta_f + \beta_t \]

 component of mean emission point of a single particle parallel to the velocity

 \[\langle x_{\text{out}} \rangle = \frac{\langle r \beta_f \rangle}{\sqrt{\beta_t^2 + \beta_f^2}} = \frac{r_0 \beta_0 \beta}{\beta_0^2 + T/m_t} \]

 assume a Gaussian density profile with radius \(r_0 \) and linear transverse velocity profile \(\beta_f = \beta_0 r/r_0 \) then we

 \[\mu_{\text{light, heavy}} = \langle r_{\text{light, heavy}} \rangle = \langle x_{\text{light, heavy}} \rangle \]

- Lighter particles emitted closer to the centre/later than heavier particles

- Emission asymmetry only arises in a system where both random (thermal) and correlated (flow) velocities exist and are comparable in magnitude
Why non-identical particles (cont.)?

- Kaons are heavier than Pions and have more inertia than Pions
- Pions suffer more thermal collisions with other particles inside the system than kaons and hence, spend more time in system and emitted from larger volume
- Kaons leave system earlier than pions and emission asymmetry arises
- Non-identical particle femtoscopy - source size plus emission asymmetry

Experimental correlation function

\[C(k^*) = \frac{\int N(p_a, p_b) \delta(k^* - \frac{1}{2}(p_a^* - p_b^*)) d^3p_a d^3p_b}{\int D(p_a, p_b) \delta(k^* - \frac{1}{2}(p_a^* - p_b^*)) d^3p_a d^3p_b} = \frac{N(k^*)}{D(k^*)} \]

- \(N(k^*) \) - distribution of \(k^* \) of pairs from same events (signal)
- \(D(k^*) \) - distribution of \(k^* \) of pairs from different events (background)

where \(k^* \) : half of the relative momentum of pair or momentum of the first particle (pions) in PRF

Lighter mass particles are selected as first particle conventionally
Double Ratio : C+/C-

Measured Correlation functions can be divided into two groups:

- **C+**: k^* and ν aligned ($\vec{k}^* \cdot \vec{\nu} > 0$) i.e. pions are faster
- **C-**: k^* and ν anti-aligned ($\vec{k}^* \cdot \vec{\nu} < 0$) i.e. kaons are faster.

where ν is pair velocity.

In principle, we can have two scenarios of particle emission in real data:

1. pions are emitted closer to center of source (or later) than kaons
2. kaons are emitted closer to center of source (or later) than pions
Probing space-time asymmetry

Pions are emitted closer to center of source (or later) than **kaons**

\[\vec{k}^* \cdot \vec{v} \text{ or } \cos (\psi) > 0 \]

Catching up
- Large interaction time
- Large correlation

\[\vec{k}^* \cdot \vec{v} \text{ or } \cos (\psi) < 0 \]

Moving away
- Small interaction time
- Small correlation

Double ratio
- Sensitive to the space-time asymmetry

- \(\frac{C_+}{C_-} \) (unlike-sign pairs) : above unity
- \(\frac{C_+}{C_-} \) (like-sign pairs) : below unity
ALICE detector

Dedicated to study hot and dense strongly interacting matter: QGP

- Excellent tracking by ALICE detector enables us to analyse correlations of particles with low momentum
- TPC was used for track reconstruction
- TPC and TOF are used for particle identification

Ashutosh Kumar Pandey
Correlation Functions

![Graph showing correlation functions]

- Correlation functions show similar trend in all direction and for both magnetic field polarity

\[\text{ALICE, Pb-Pb } \sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \]

10-20% central

- Attractive correlation for unlike-sign pairs
- Repulsive correlation for like-sign pairs

Observation:

- Correlation functions exhibit a consistent trend across different directions and magnetic field polarities.
Double ratio \((C_+/C_-)\) in “out” direction deviates significantly from unity

On average, pions are emitted closer to the centre/later than kaons

Double ratio \((C_+/C_-)\) in “side” and “long” directions is consistent with unity (expected from azimuthal and mid-rapidity symmetries)
Non-femtososcopic background

Correlation function contains femtososcopic correlation as well as contributions from:

Elliptic flow (v_2):

- All particles (including pions and kaons) from an event are more likely emitted in a specific direction due to presence of v_2 and their momenta tend to point in the same direction, hence their relative momenta will be low.

- For particles from different events, collimation effect doesn’t exist since they have different event plane and hence, pair will make more combinations with larger relative momenta.

- Which means, probability of finding a pair of low relative momenta is more for same event pairs and vice-versa.

- The background shape is above unity for low relative momentum and below unity for high relative momentum.

Same negative slope for all pairs: global event-wide correlation are producing it.

Ashutosh Kumar Pandey
Non-femtoscopic background

Correlation function contains femtoscopic correlation as well as contributions from:

Resonance decay correlations:
- Resonance particles travel some distance with common flow velocity before they decay
- Decay products have two velocity component: common velocity equal to resonance particle velocity and random component of decay momenta
- If decay momentum will large w.r.t. daughter’s mass, emission of them will be randomised
- It may produce similar correlation/asymmetry like collective flow which will depend on relative production of resonance and their daughters

Residual correlations (remnants of the femtoscopic correlations from weakly decaying particles): parent particles should be treated as femtoscopically correlated

Same negative slope for all pairs : global event-wide correlation are producing it

Ashutosh Kumar Pandey
Non-femtoscopic background correction

\[C^{ij}_{\text{exp}} = B^{ij} + |\psi^{ij}|^2 \]
where \(i,j \) are +,- (pion-kaon)

Experimental correlation function
real femtoscopic correlation
Non-femtoscopic background

For Coulomb interaction at a given \(k^* \):
\[C_{SS} = 1/C_{OS} \]

With a background “\(B \)”: \[
(C_{\text{exp},SS} - B) = \frac{1}{(C_{\text{exp},OS} - B)}
\]

Background function “\(B \)”: \[
B^{ij} = a^{ij}_0 + \sum_{l=1}^5 a_l x^{(l+1)}
\]

\[\chi^2_{\text{background}} = \frac{1}{\sigma^2_{\text{tot}}} \left[(C^{++} - B) - \frac{1}{(C^{+} - B)} \right]^2 + \frac{1}{\sigma^2_{\text{tot}}} \left[(C^{--} - B) - \frac{1}{(C^{+} - B)} \right]^2 \]
\[+ \frac{1}{\sigma^2_{\text{tot}}} \left[(C^{++} - B) - \frac{1}{(C^{+} - B)} \right]^2 + \frac{1}{\sigma^2_{\text{tot}}} \left[(C^{--} - B) - \frac{1}{(C^{+} - B)} \right]^2 \]

\[C^{ij}_{\text{real}} = C^{ij}_{\text{exp}} - B^{ij} \]

Sum of errors for all pairs at given \(k^* \)

Ashutosh Kumar Pandey
Non-femtoscopic background contribution in the data

- Non-femtoscopic background function shape changes from central to peripheral collisions
Extracting the source size and emission asymmetry

\[C(k^*) = \int dr' |\psi(k^*, r')|^2 S(r') \]

known from experiment *unknown*

Pair wave function: (treated as weight)

\[\psi_{pair} = \psi_{motion} + \psi_{FSI} \]

Motion of pair as whole (plane wave: exponential function, only additional phase)

\[\Psi(k^*, r') = \sqrt{A_C(\eta)} \left[e^{-i \vec{k}^* . \vec{r}^*} F(-i\eta, 1, i\zeta) + f_C(\vec{k}^*) \frac{\tilde{G}(\rho, \eta)}{r^*} \right] \]

Gamow factor

Confluent hypergeometric function

Strong scattering amplitude, modified by the Coulomb interaction

Ashutosh Kumar Pandey
Extracting the source size and emission asymmetry

\[\eta = \frac{1}{k^*a_C} \]
Bohr radius of the pair (248.52 fm for pion-kaon)

\[\zeta = k^*r^*(1 + \cos \theta^*) \]
Angle between \(k^* \) and pair relative position \(r^* \) in PRF

\[f_C(\vec{k}^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0 k^*^2 - \frac{2}{a_C}h(\vec{k}^*a_C) - i \vec{k}^*A_C(\vec{k}^*) \right]^{-1} \]

where \(f_0 = 0.137 \) fm for like-sign pair of pion-kaon, -0.071 fm for unlike-sign pair of pion-kaon, \(d_0 \) is the effective radius (taken to 0 for small \(k^* \) where \(1/f_0 \) term dominates).

\[F(\alpha,1,z) = 1 + \alpha z + \alpha(\alpha + 1)z^2/2!^2 + \ldots \]
Extracting the source size and emission asymmetry

Source emission function:

\[S(r) = \exp \left(-\frac{(r_{\text{out}} - \mu_{\text{out}})^2}{R_{\text{out}}^2} - \frac{r_{\text{side}}^2}{R_{\text{side}}^2} - \frac{r_{\text{long}}^2}{R_{\text{long}}^2} \right) \]

Fitting: using CorrFit package, generate correlation function using Monte-Carlo method
(Adam Kisiel, NUKLEONIKA 2004;49(Supplement 2):S81–S83)

CorrFit Input: Fraction of primary, correctly identified pairs

\[F_{\pi^\pm K^\pm}(c) = p_{\pi}(c) \cdot p_{K}(c) \cdot f_{\pi^\pm}(c) \cdot f_{K^\pm}(c) \cdot g_s(c) \]

- F is a fraction of primary, correctly identified pairs of particles that fits under the assumed Gaussian profile,
- p is the purity of particles,
- f is the fraction of primary particles,
- g is the fraction of femtoscopically correlated pairs under assumed Gaussian profile,
- c is centrality class, and
- s is the magnetic field polarity.
- The value of g is estimated using the results obtained in Adam Kisiel, Phy.Rev.C 81, 064906 (2010)
Ideally, generated correlation function should be able to reproduce momentum distributions and freeze-out conditions of particles, which is very hard.
Fitting: CorrFit Input (cont.)

- **CorrelationFitter** = CFFitterNonId
- **SourceModel** = SourceModelGausLCMS
- **Fitting range of** R_{out} : (3.0, 12.0) fm
- **Fitting range of** μ_{out} : (-8.0, 0.0) fm
- **R_{side} multiplier** : 1.0
- **R_{long} multiplier** : 1.3
- **Interactions**: Strong, Coulomb
- **Fitting range (in k*)** : (0.0, 0.1) GeV/c
- **Normalisation Range (in k*)** : (0.15, 0.20) GeV/c
Fitted correlation function:

\(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

Data and fit for the correlation functions of \(\pi^+ K^+ \) and \(\pi^- K^- \) in the ALICE Preliminary Pb-Pb experiment. The data points are represented by red dots, and the fit is shown as a blue line.

- **\(\pi^+ K^+ \)**
- **\(\pi^- K^- \)**

Conditions:
- 10-20% centrality
- \(0.19 < p_T < 1.5 \text{ GeV/c} \)
- \(|\eta| < 0.8 \)
Results: source size and emission asymmetry

Finite emission asymmetry between pion and kaon is observed which increases with centrality.

- Source size increases from peripheral to central collisions
- Default Therminator overestimate asymmetry

ALICE Preliminary

0.19 < p_T < 1.5 GeV/c, |h| < 0.8

Therminator-2

- Default
- $\Delta t = 2.1$ fm/c, $\sigma_t = 0.3$ fm/c
- $\Delta t = 2.1$ fm/c, $\sigma_t = 2.0$ fm/c

- $\Delta t = 1.0$ fm/c, $\sigma_t = 2.0$ fm/c
- $\Delta t = 3.2$ fm/c, $\sigma_t = 2.0$ fm/c

ALICE Preliminary | < 0.8
dN_{ch}/d\eta (dN_{ch}/d\eta)^{1/3}

ALI-PREL-147258
Summary

- First measurement of emission asymmetry at the LHC in Pb-Pb collisions at 2.76 TeV

- Finite emission asymmetry observed between pions and kaons which shows pions are emitted later than kaons

- It is expected in a system with strong collectivity which includes flow of resonances (consistent with model predictions, e.g. Therminator2 coupled with viscous hydrodynamics)

- Source size and emission asymmetry increase from peripheral to central collisions

- Results may suggest a 2.1 fm/c delay in emission time which means different particle species freeze-out at different times

- Results have been shown in QM2018 talk and ICHEP 2018, paper is under IRC review
Thank you
Backup
Analysis Details

Data set: **Pb-Pb@2.76 TeV**: LHC11h_pass2 (AOD145)

Magnetic field polarity: +ve and -ve

Event Selection: $|V_z| < 10.0$ cm

Centrality Percentile Bins: (0, 5, 10, 20, 30, 40, 50, 90)

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

Field: (+,+)

No of events:
- 0-5%, 4.4 mn
- 5-10%, 4.3 mn
- 10-20%, 2.6 mn
- 20-30%, 2.0 mn
- 30-40%, 2.0 mn
- 40-50%, 2.0 mn
- 50-90%, 1.1 mn
- 0-90%, 18.4 mn

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

Field: (-,-)

No of events:
- 0-5%, 5.8 mn
- 5-10%, 5.5 mn
- 10-20%, 3.0 mn
- 20-30%, 2.5 mn
- 30-40%, 2.5 mn
- 40-50%, 2.5 mn
- 50-90%, 1.3 mn
- 0-90%, 23.2 mn

Ashutosh Kumar Pandey
Analysis Details (Cont.)

Track Selection: Filter Bit 7 (TPC only track)

\[p_T \text{ range: } 0.19-1.5 \text{ GeV/c, } |\eta| <0.8 \]

Pion

ALICE, Pb-Pb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

0-5%, \(\pi^* \), Field: (-,-)

Kaon

ALICE, Pb-Pb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

0-5%, \(K^* \), Field: (-,-)

Pion

ALICE, Pb-Pb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

0-5%, \(\pi^* \), Field: (-,-)

Kaon

ALICE, Pb-Pb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

0-5%, \(K^* \), Field: (-,-)
Analysis Details (Cont.)

PID cuts for Pions:

- $|n\sigma_{TPC}| < 3.0 \rightarrow |p| < 500 \text{ MeV}/c,$
- $\sqrt{(n\sigma_{TPC}^2 + n\sigma_{TOF}^2)} < 3.0 \rightarrow |p| > 500 \text{ MeV}/c$

PID cuts for Kaons:

- $|n\sigma_{TPC}| < 2.0 \rightarrow |p| < 400 \text{ MeV}/c,$
- $|n\sigma_{TPC}| < 1.0 \rightarrow 400 \text{ MeV} < |p| < 450 \text{ MeV}/c,$
- $|n\sigma_{TPC}| < 3.0 \text{ and } |n\sigma_{TOF}| < 2.0 \rightarrow 450 \text{ MeV} < |p| < 800 \text{ MeV}/c,$
- $|n\sigma_{TPC}| < 3.0 \text{ and } |n\sigma_{TOF}| < 1.5 \rightarrow 800 \text{ MeV} < |p| < 1000 \text{ MeV}/c,$
- $|n\sigma_{TPC}| < 3.0 \text{ and } |n\sigma_{TOF}| < 1.0 \rightarrow |p| > 1000 \text{ MeV}/c$
Analysis Details (Cont.)

Number of Events to Mix: 5

Pairs considered: Pion-Kaon (all ± charge combinations)

Pair cuts: to optimise merging effect/detector resolution effect

 Cut for Fraction of shared cluster: remove pairs of particles which share more than 5% of their overall numbers of registered hits in TPC

Anti-gamma cut: to remove e^+e^- conversion pairs coming from photons

 ▶ Minimum allowed e^+e^- $M_{\text{inv}} = 0.002$ GeV;

 \[M_{\text{inv}} = 2m_e^2 + 2(E_1E_2 - \mathbf{p}_1 \cdot \mathbf{p}_2) \]

 ▶ Minimum polar angle difference: 0.008 rad.

Merged fraction cut (MF cut):

 ▶ Radius range: $R = (0.8, 2.5)$ m, $|\Delta \eta| < 0.01$,

 ▶ Maximum allowed distance between tracks: $d = 3.0$ cm,

 ▶ Fraction of merged clusters (MF = $N_{\text{pass}}/N_{\text{total}}$): 0.01 (Unlike sign pairs)
 0.07 (Like sign pairs)

 where, N_{pass} is number of points for distance between track < d in R range,
 N_{total} is total number of points in R range (step size = 1.0 cm)

Remove tracks if their MF is more than selected value
MF cut selection

MF cut selection method: $0.0 \leq k^* \leq 0.2 \text{ GeV/c}$

$$\chi^2_{n,\text{ndf}(\text{Side})} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(C^+/C^-)_{\text{Side}}(k^*_i) - 1}{\sigma_i(\text{Side})} \right)^2$$

Like sign pairs:

<table>
<thead>
<tr>
<th>Pair</th>
<th>Magnetic Field</th>
<th>χ^2/ndf for no paircut</th>
<th>χ^2/ndf for 1% MF cut</th>
<th>χ^2/ndf for 3% MF cut</th>
<th>χ^2/ndf for 7% MF cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^+K^+</td>
<td>+ve</td>
<td>5.4976</td>
<td>2.4188</td>
<td>2.4310</td>
<td>2.2936</td>
</tr>
<tr>
<td>π^-K^-</td>
<td>+ve</td>
<td>6.2763</td>
<td>2.3971</td>
<td>2.4165</td>
<td>2.4859</td>
</tr>
<tr>
<td>π^+K^+</td>
<td>-ve</td>
<td>6.9418</td>
<td>1.9611</td>
<td>1.8666</td>
<td>1.8129</td>
</tr>
<tr>
<td>π^-K^-</td>
<td>-ve</td>
<td>7.4470</td>
<td>2.2219</td>
<td>2.2031</td>
<td>2.1611</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>6.5407</td>
<td>2.2497</td>
<td>2.2293</td>
<td>2.1883</td>
</tr>
</tbody>
</table>

Un-like sign pairs:

<table>
<thead>
<tr>
<th>Pair</th>
<th>Magnetic Field</th>
<th>χ^2/ndf for no paircut</th>
<th>χ^2/ndf for 1% MF cut</th>
<th>χ^2/ndf for 3% MF cut</th>
<th>χ^2/ndf for 7% MF cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^-K^+</td>
<td>+ve</td>
<td>1.3168</td>
<td>1.0588</td>
<td>1.2069</td>
<td>1.2820</td>
</tr>
<tr>
<td>π^+K^-</td>
<td>+ve</td>
<td>2.8674</td>
<td>2.1149</td>
<td>2.1333</td>
<td>2.3948</td>
</tr>
<tr>
<td>π^-K^+</td>
<td>-ve</td>
<td>1.7220</td>
<td>1.2660</td>
<td>1.2785</td>
<td>1.1984</td>
</tr>
<tr>
<td>π^+K^-</td>
<td>-ve</td>
<td>2.2667</td>
<td>1.7491</td>
<td>1.6335</td>
<td>1.7308</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>2.0432</td>
<td>1.5472</td>
<td>1.5630</td>
<td>1.6515</td>
</tr>
</tbody>
</table>
Particle purity

![Graph showing particle purity vs. centrality]

- Field: π^+, π^-
- Field: K^+, K^-

Centrality (%)

- 0-5%
- 5-10%
- 10-20%
- 20-30%
- 30-40%
- 40-50%
- 50-90%

Purity
Systematic studies:

<table>
<thead>
<tr>
<th>Error source</th>
<th>variation</th>
<th>Error (in %) R_{Out}, μ_{Out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track</td>
<td>Hybrid track (FilterBit8)</td>
<td>13, 17</td>
</tr>
<tr>
<td>Pair cuts</td>
<td>± 2 % MF cut</td>
<td>0.18, 0.5</td>
</tr>
<tr>
<td>Strict PID cut</td>
<td>Pion: $n\sigma_{TPC} < 2.5$ for $</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Kaon: $n\sigma_{TPC} < 2.0$ for $</td>
<td>p</td>
</tr>
<tr>
<td>Looser PID cut</td>
<td>Pion: $n\sigma_{TPC} < 3.0$ for $</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>Kaon: $n\sigma_{TPC} < 2.5$ for $</td>
<td>p</td>
</tr>
<tr>
<td>Normalization range</td>
<td>$k^* : (0.1,0.12), (0.12,0.17), (0.18,0.25)$ GeV/c</td>
<td>0.6, 0.9</td>
</tr>
<tr>
<td>Fit range</td>
<td>$k^* = (0.,0.08),(0.,0.12),(0.,0.15), (0.005, 0.1), (0.01,0.1)$ GeV/c</td>
<td>9, 19</td>
</tr>
<tr>
<td>Primary fraction (purity)</td>
<td>± 10%</td>
<td>10,16</td>
</tr>
</tbody>
</table>
Correlation function (like sign)

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

$\pi^{+}K^{+}$, 0-5% central

$\pi^{+}K^{+}$, 5-10% central

$\pi^{+}K^{+}$, 30-40% central

$\pi^{+}K^{+}$, 40-50% central

C

$C = 2.76$ TeV

k^* (GeV/c)
Correlation function (like sign)

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

πK^-, 0-5% central

πK^-, 5-10% central

πK^-, 30-40% central

πK^-, 40-50% central

C

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

k^* (GeV/c)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

$+ve$ B

$-ve$ B

-fit
Correlation function (unlike sign)

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

πK^+, 0-5% central

πK^+, 5-10% central

πK^+, 30-40% central

πK^+, 40-50% central

$C = 2.76$ TeV

K^+, 0-5% central

K^-, 5-10% central

K^+, 30-40% central

K^-, 40-50% central

K^+, fit

$+ve B$

$-ve B$

k^* (GeV/c)
Correlation function (unlike sign)

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

π^+K^-, 0-5% central

π^+K^-, 5-10% central

π^+K^-, 30-40% central

π^+K^-, 40-50% central

C

k* (GeV/c)
Reason for large statistical errors

One expects larger errors for μ in Cartesian coordinates. The reason is the following.

- In CC, we divide pairs in 2 groups to create C^+ and C^-. The division is not equal. There will be higher statistics in one of them and lower in the second one. Thus the statistical significance is not equal.

- The statistical error for R is dominated by the statistics from the component which has higher statistics (best case scenario).

- The opposite situation happens for emission asymmetry μ. In that case the statistical error is dominated by the statistics from the component with lower statistics (worst case scenario).
Comparison of results from CC and SH methods